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s u m m a r y

Background & aims: Body shape expressed as the trunk-to-leg volume ratio is associated with diabetes
and mortality due to the associations between higher adiposity and lower lean mass with Metabolic
Syndrome (MetS) risk. Reduced appendicular muscle mass is associated with malnutrition risk and age-
related frailty, and is a risk factor for poor treatment outcomes related to MetS and other clinical con-
ditions (e.g.; cancer). These measures are traditionally assessed by dual-energy X-ray absorptiometry
(DXA), which can be difficult to access in clinical settings. The Shape Up! Adults trial (SUA) demonstrated
the accuracy and precision of 3-dimensional optical imaging (3DO) for body composition as compared to
DXA and other criterion measures. Here we assessed whether trunk-to-leg volume estimates derived
from 3DO are associated with MetS risk in a similar way as when measured by DXA. We further explored
if estimations of appendicular lean mass (ALM) could be made using 3DO to further improve the
accessibility of measuring this important frailty and disease risk factor.
Methods: SUA recruited participants across sex, age (18e40, 40e60, >60 years), BMI (under, normal, over-
weight, obese), and race/ethnicity (non-Hispanic [NH] Black, NH White, Hispanic, Asian, Native Hawaiian/
Pacific Islander) categories. Each participant had whole-body DXA and 3DO scans, and measures of car-
diovascularhealth. The3DOmeasures of trunkand leg volumeswere calibrated toDXA toexpress equivalent
trunk-to-leg volume ratios.We expressed each bloodmeasure andoverallMetS risk in quartile gradations of
trunk-to-leg volume previously defined by National Health and Nutrition Examination Survey (NHANES).
Finally, we utilized 3DOmeasures to estimateDXAALMusing ten-fold cross-validation of the entire dataset.
Results: Participants were 502 (273 female) adults, mean age¼ 46.0 ± 16.5y, BMI ¼ 27.6 ± 7.1 kg/m2 and a
mean DXA trunk-to-leg volume ratio of 1.47 ± 0.22 (females: 1.43 ± 0.23; males: 1.52 ± 0.20). After ad-
justments for age and sex, each standard deviation increase in trunk-to-leg volume by 3DOwas associated
with a 3.3 (95%odds ratio [OR]¼2.4e4.2) times greater risk ofMetS,with individuals in the highest quartile
of trunk-to-leg at 27.4 (95%CI: 9.0e53.1) times greater risk ofMetS compared to the lowest quartile. Risks of
elevated blood biomarkers as related to high 3DO trunk-to-leg volume ratios were similar to previously
published comparisons using DXA trunk-to-leg volume ratios. Estimated ALM by 3DO was correlated to
DXA (r2 ¼ 0.96, root mean square error ¼ 1.5 kg) using ten-fold cross-validation.
Conclusion: Using thresholds of trunk-to-leg associated with MetS developed on a sample of US-
representative adults, trunk-to-leg ratio by 3DO after adjustments for offsets showed significant asso-
ciations to blood parameters and MetS risk. 3DO scans provide a precise and accurate estimation of ALM
across the range of body sizes included in the study sample. The development of these additional
measures improves the clinical utility of 3DO for the assessment of MetS risk as well as the identification
of low muscle mass associated with poor cardiometabolic and functional health.

Published by Elsevier Ltd.
ir displacement plethysmography; ALM, appendicular lean mass; AUC, area under the curve; BP, blood pressure; BG,
cular disease; DXA, dual energy X-ray absorptiometry; HDL, high-density lipoprotein; HOMA-IR, homeostatic model
ndrome; MRI, magnetic resonance imaging; TG, triglycerides.
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1. Introduction on a Hologic Discovery/A system (Hologic Inc., Marlborough, MA).
DXA scans were analyzed at UHCC by a trained technologist using
As research between body composition measures and disease
risk continues to grow, clinically accessible measures are increas-
ingly valuable [2]. Earlier identification of over/undernutrition is
critical to quantifying disease risk, preventing hospitalization,
increasing awareness and education, and developing disease-
mitigating interventions [3]. Systems capable of streamlining per-
sonal health status as well as provide measures associated with
disease risk give healthcare providers opportunities to capture
these measures as part of routine assessments.

Though less common during normal clinical screenings, dual-
energy X-ray absorptiometry (DXA) systems are capable of whole-
body and regional body composition measures linked to disease
risk and outcomes. Wilson et al. (2013) showed that an increased
trunk-to-leg volume, based onDXA scans in a representative sample
of US adults, showed an increased risk of Metabolic Syndrome
(MetS), cardiovascular disease (CVD), and mortality [4]. Their work
showed that disease risk was driven by both increased fat mass and
reducedmusclemass. Decreasingmusclemass across the lifespan is
associatedwith impaired glucose tolerance,while decreasedmuscle
strength due tomuscle loss strongly relates to frailty and fall risk [5].
Given that an adult with normal weight could be at risk for both
elevated truncal fat deposition and lowmusclemass, routine clinical
measures such as body mass index (BMI) and weight may not
identify the increased disease risk resulting from elevated central
obesity and decreased arm/leg muscle mass [6].

Alternatively, three-dimensional optical (3DO) systems have
significant potential for use in monitoring disease risk factors due
to their ease of use, rapidity of measures, and lack of ionizing ra-
diation. These scans also provide a 3D avatar of body shape that has
the potential to engage individuals in managing disease risks as
opposed to monitoring numerical factors such as weight change
[7e9]. Previously, we have shown the accuracy and precision of a
clinical 3DO system of whole-body and regional measures of body
composition and anthropometry compared to more costly or
invasive laboratory measures (DXA and manual anthropometry)
[1]. Further, we identified that body shape and composition fea-
tures from 3DO measures improved the prediction of MetS risk as
compared to demographic-based prediction models [10]. The pur-
pose of this study was to determine if 3DO trunk-to-leg had a
similar ability to identify those at risk of MetS and at-risk blood
biomarkers as previously found in DXA studies. Further, using a
machine learning approach, we assessed the accuracy and precision
of a 3DO-based prediction equation for appendicular lean mass
(ALM) compared to DXA.
Fig. 1. Regional cut line differences between 3-dimensional optical (left) and dual-
energy X-ray absorptiometry (right) systems.
2. Methods

This analysis included participants with data collected as part of
the Shape Up! Adults study (NIH R01 DK109008, clinicaltrials.gov
ID NCT03637855). The Shape Up! Adults study represents a
diverse sample of adults with stratifications by sex, age (18e40 y,
40e60 y, >60 y), self-reported ethnicity (non-Hispanic White, non-
Hispanic Black, Hispanic, Asian, and native Hawaiian or Pacific
Islander), body mass index (BMI in kg/m2; <18, 18e25, 25e30,
>30), and geographic location (San Francisco, CA; Baton Rouge, LA;
or Honolulu, HI). Full details of the study recruitment and pro-
cedures are outlined in the prior publication [1]. However, in brief,
the methods used to collect data are outlined.

Body shape scans by 3DO were obtained using the Styku S100
scanner (Styku LLC, Los Angeles, CA, software version 4.1) while
participants wore form-fitting shorts, a sports bra for females, and a
swim cap. These clothes were also worn for whole-body DXA scans
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Hologic Apex version 5.6 with the National Health and Nutrition
Examination Survey (NHANES) Body Composition Analysis cali-
bration option disabled. DXA regional measures include ALM
(including bone mineral) and appendicular lean soft tissue (ALST;
excluding bone mineral).

Fasting blood samples used for analysis included fasting blood
glucose (BG), triglycerides (TG), insulin, and high-density lipopro-
tein cholesterol (HDL-C), while systolic/diastolic blood pressure
(sBP/dBP) were measured at rest. Manual anthropometric mea-
surements of waist circumference were collected and sex-specific
cut points (88 cm in females, 102 cm in males) were combined
withmeasures of BG, TG, HDL-C, and sBP/dBP for MetS diagnosis, as
defined previously [10]. MetS was defined using the 2005 National
Cholesterol Education Program Adult Treatment Panel III guidelines
as having �3 of the following: high waist circumference, elevated
TG (�150 mg/dL), elevated blood pressure (�130 mmHg systolic or
�85 mm Hg diastolic), elevated BG (�100 mg/dL), and/or reduced
HDL-C (<40 mg/dL in males, <50 mg/dL in females) [11]. Homeo-
static model assessment for insulin resistance (HOMA-IR) was
calculated as fasting insulin (mg/ml) * fasting glucose (mmol/l)/22.5.
HOMA-IR values � 2.9 were classified as having insulin resistance.

Regional body volume by DXA is based on the body volume
models previously developed by Wilson et al. (2013) using air
displacement plethysmography (ADP) as the criterion approach for
whole-body volumemeasures [12]. In their study, DXAmeasures of
fat, lean, and bone mineral were used to estimate volume based on
the derivation of inverse densities of each component (1.05, 0.88,
and 4.85 kg/L, respectively) and a residual component (0.01L). Us-
ing the DXA scan software, cut points are placed to differentiate
regions of the arms, legs, and trunk. DXA whole-body volume es-
timates have been validated to ADP across multiple studies, though
the differences in cut lines (detailed below) limit the ability to
validate regional body volumes by DXA to criterion approaches
such as magnetic resonance imaging (MRI) [13,14].

Trunk-to-leg volume is defined as the trunk volume divided by
the sum of left and right legs. As detailed in our prior publication,
the definitions for trunk and leg regions differ between DXA and
those automatically derived from the 3DO software [1]. An example
of the regional differences is presented in Fig. 1. The 3DO trunk
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volume (in liters) was therefore calibrated to DXA trunk volume
using the previously published equation (3DO-calibrated Trunk
Volume ¼ 0.47 * 3DO Trunk Volume þ 10.16). Leg 3DO volumes
were found to have sex-specific associations to DXA: males (3DO-
calibrated leg volume ¼ 1.50 * 3DO leg volume þ 3.01) and females
(3DO-calibrated leg volume¼ 1.53 * 3DO leg volumeþ 2.19). Values
for 3DO leg volume were performed using the regression equation
for each leg, then summed to create leg volume. Finally, trunk-to-
leg volume was calculated from these converted values
(3DO ¼ trunk volume/[right leg volume þ left leg volume]). Data
was divided into quartiles based on the DXA-derived trunk-to-leg
volume from a representative sample of US adults in the NHANES
as published in Wilson et al. (2013): Q1 (<1.34), Q2 (1.34e1.50), Q3
(1.50e1.65), and Q4 (>1.65) [4].
2.1. Statistical methods

For trunk-to-leg assessments, we determined the prevalence of
MetS, HOMA-IR, and elevated blood markers in each quartile of
trunk-to-leg volume by 3DO. We used logistic regression models to
determine the association between trunk-to-leg and metabolic
outcomes. For each model, we determined area under the curve
(AUC) receiver operating characteristic, odds ratio per standard
deviation (SD) increase of trunk-to-leg volume ratio, and odds ra-
tios based on trunk-to-leg quartile (with Q1 as reference). Models
were adjusted for age (Model 1) and age, sex, race/ethnicity, BMI,
and waist circumference (Model 2). Model performance was
compared to a non-linear approach, where restricted cubic splines
were applied to the cutoffs of trunk-to-leg volume for both DXA and
3DO [15]. Logistic regression models were repeated using the pre-
defined splines and the resulting AUCs were contrasted to the fully
adjusted model (Model 2) [16].

To develop a 3DO ALM prediction model, a k-fold cross valida-
tion was performed to develop a prediction model while reducing
the risk of overfitting. This machine learning approach divided the
dataset into equal samples, where equations developed in each
dataset were validated in the separate, unseen data [17]. Only
measures available on the commercial version of the 3DO system
were included. Measures that included right and left-sided values
(e.g.; bicep or thigh circumference) were averaged and these
average values were included as potential covariates in the pre-
dictionmodel. In each dataset, body composition, area, volume, and
circumference (in centimeters) measures were entered using a SAS
macro for kfold to divide the dataset into equal samples. Procedures
included PROC GLMSELECT with stepwise selection and final vari-
ables remaining in the model if they were statistically significant
(p < 0.05). Validation metrics were performed across k-folds
ranging from 2 to 10 to ensure that the final fold size of 10 (n ¼ ~50
participants/fold) was not too small to impact model performance.
After reporting the assessment of each model to ensure robustness
of the number of folds, the models were averaged into the final
prediction model presented. Performance was evaluated using the
coefficient of determination (r2), root mean square error (RMSE),
and BlandeAltman values to determine the mean difference (MD)
and 95% limits of agreement (LoA). The estimate model was then
repeated for ALST, excluding regional bone mineral, for use in low
muscle mass assessment evaluations. Additionally, because two
scans were performed using 3DO on each participant, test-retest
precision was performed. Samples with only single measure-
ments or non-physiologically plausible values were removed.
Duplicate ALM values were calculated and the measurement pre-
cisionwas assessed using the coefficient of variation (CV) and RMSE
assessments. Statistical analysis was performed using SAS version
9.4 for Windows (SAS Institute, Cary, NC).
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3. Results

Of the 619 participants recruited, 502 participants hadmeasures
on both DXA and 3DO systems. Participant demographics and body
composition measures are presented in Table 1. The distribution of
participants into BMI categories or underweight (5.6%), normal
weight (32.7%), overweight (33.3%), and obese (28.5%); a greater
proportion of SUA participants were in the lower BMI categories
compared to NHANES (underweight [1.7%], normal weight [33.0%],
overweight [38.7%], and obese [26.6%]).

The mean ± standard deviation for DXA trunk-to-leg volume in
the SUA sample (1.47 ± 0.22) was similar to that reported in the
NHANES sample (1.53 ± 0.24). Using the trunk-to-leg cut-offs
previously derived using the NHANES dataset, the distribution of
participants based on DXA (Q1 [n ¼ 136, 27.1%], Q2 [n ¼ 161, 32.1%],
Q3 [n ¼ 100, 19.9%], Q4 [n ¼ 105, 20.9%]) was similar to 3DO(Q1
[n ¼ 130, 25.9%], Q2 [n ¼ 160, 31.9%], Q3 [n ¼ 107, 21.3%], and Q4
[n ¼ 105, 20.9%]). While participants in the SUA sample had a
slightly lower proportion of individuals in the higher quartiles, they
exhibited a higher rate of MetS (18.9%, n ¼ 95) compared to
NHANES (15.6%).

To compare the race/ethnic-specific average trunk-to-leg vol-
ume ratios, Supplement Table 1 provides the mean, standard de-
viation, minimum andmaximumvalues, divided by sex. In females,
the mean trunk-to-leg volume ratio for NH blacks (1.31 ± 0.21) was
significantly lower (all p < 0.05) compared to all other groups. In
males, NH Blacks were significantly lower than NH Whites
(p < 0.05). However, the minimum and maximumvalues show that
each race/ethnic group had individuals in all four trunk-to-leg
volume ratios across both sexes.

The sex-specific prevalence of HOMA-IR and MetS based on
trunk-to-leg quartiles are presented in Fig. 2. MetS prevalence
increased from Q1 (2.2% in males, 6.3% in females) to Q4 (41.9% of
males, 55.5% of females), with a significant (p < 0.001) trend of
increasing prevalence with increasing trunk-to-leg quartile in
both sexes. Similarly, across trunk-to-leg quartiles, the prevalence
of elevated HOMA-IR increased significantly (p < 0.001) from Q1
(4.2% in males, 9.1% in females) to Q4 (71.2% in males, 53.3% in
females).

Figure 3 presents the trends in individually measured blood
parameters with increasing trunk-to-leg quartile. Each of the
measured blood parameters showed a significant trend for
increasing prevalence of impairment with increasing trunk-to-leg
quartile, with elevated blood pressure having the greatest preva-
lence in Q4 (41.9% in males, 53.1% in females). While MetS preva-
lence was greater in females (Fig. 2), greater prevalence of elevated
triglycerides was observed in Q4 males (36.6% versus 24.4% in fe-
males), while increased visceral adipose tissue area (105.1 cm2 vs
93.2 cm2 in females, p < 0.05; data not shown) was also observed.

Results of the area under the receivereoperator curves (AUC) for
the estimation of cardiometabolic parameters based on trunk-to-
leg as measured by DXA and 3DO calibration are presented in
Table 2. AUCs for both approaches ranged from 0.706 to 0.804, with
similar performance for DXA and 3DO-calibrated trunk-to-leg vol-
umes. In the fully adjusted models, each SD increase in 3DO trunk-
to-leg volume was associated with a significantly (all p < 0.05)
increased risk for all cardiometabolic parameters, ranging from 1.4
(blood pressure and glucose) to 3.0 (MetS). Compared to Q1, a
significantly greater risk for all cardiometabolic risk parameters
was observed across Q3 and Q4 (except Q3 blood pressure). Using a
non-linear approach with restricted cubic splines did not improve
the model performance for MetS prediction by DXA (logistic
AUC ¼ 0.907, cubic spline AUC ¼ 0.896) or 3DO (logistic
AUC ¼ 0.899, cubic spline AUC ¼ 0.887), with similar results for
each additional blood marker and HOMA-IR.



Table 1
Subject characteristics (n ¼ 502).

Total Females (n ¼ 273) Males (n ¼ 229)

Variable Mean (SD) Min Max Mean (SD) Min Max Mean (SD) Min Max

Age (years) 46.0 (16.5) 18.0 89.0 46.8 (16.4) 18.0 89.0 45.0 (16.5) 18.0 79.0
Height (cm) 168.1 (10.0) 144.1 202.1 161.8 (6.8) 144.1 181.0 175.6 (7.8)b 151.1 202.1
Weight (kg) 78.4 (22.3) 35.4 173.5 72.1 (21.4) 35.4 152.7 86.2 (21.0)b 40.6 173.5
BMI (kg/m2) 27.6 (7.1) 14.2 52.3 27.5 (7.8) 14.2 51.9 27.9 (6.1) 16.5 52.3
DXA FFM (kg) 55.2 (15.0) 28.6 107.8 46.1 (9.7) 28.6 80.4 66.1 (12.9)b 34.0 107.8
DXA FM (kg) 23.2 (12.2) 5.0 72.7 25.9 (12.9) 6.3 72.7 20.1 (10.4)b 5.0 66.5
DXA FM (%) 28.8 (9.6) 9.0 53.3 34.2 (8.1) 12.6 53.3 22.3 (6.8)b 9.0 47.7
DXA TR/L Volume Ratio 1.47 (0.22) 0.88 2.46 1.43 (0.23) 0.88 2.21 1.52 (0.20)b 1.08 2.46
Waist circumference (cm) 93.3 (16.7) 59.4 157.1 91.7 (16.9) 60.5 157.1 95.2 (16.4)b 59.4 157.0

Total Females Males
Count % Count % Count %

Race/Ethnicity
Asian 106 21.1 57 20.9 49 21.4
Hispanic 72 14.3 40 14.7 32 14.0
NH Black 131 26.1 69 25.3 62 27.1
NHOPIa 43 8.6 26 9.5 17 7.4
NH White 150 29.9 81 29.7 69 30.0

Age (years)
18-39 196 39.0 101 37.0 95 41.5
40-59 165 32.9 91 33.3 74 32.3
�60 141 28.1 81 29.7 60 26.2

BMI (kg/m2)
<18.5 28 5.6 24 8.8 4 1.8
18.5-24.9 164 32.7 91 33.3 73 31.9
25.0-29.9 167 33.3 80 29.3 87 38.0
�30.0 143 28.5 78 28.6 65 28.4

Insulin resistance
Yes 154 30.7 79 30.5 75 32.8
No 348 69.3 194 69.5 154 67.2

Metabolic Syndrome
Yes 95 18.8 55 20.1 40 17.5
No 410 81.2 218 79.9 189 82.5

3DO TR/L using NHANES DXA quartiles
<1.34 130 25.9 86 31.5 44 19.2
1.34e1.50 160 31.9 87 31.9 73 31.9
1.50e1.65 107 21.3 51 18.7 56 24.5
�1.65 105 20.9 49 17.9 56 24.5

Abbreviations: BMI: body mass index, DXA: dual energy X-ray absorptiometry, FFM: fat free mass, FM: fat mass, NH: non-Hispanic, SD: standard deviation, TR/L: trunk-to-leg
ratio.
Percentage values are rounded.

a NHOPI: native Hawaiian or Pacific Islander.
b Values differ significantly (p < 0.05) between sexes.
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For utilizing 3DO measures to estimate DXA ALM the results of
each validation in the separate holdout samples of the folds
(ranging from 2 to 10) were evaluated. There were no differences in
RMSEs for 2-fold through 10-fold models (data not shown),
therefore the 10-fold model was selected and evaluated for its
performance. RMSEs for each of the ten folds ranged from 1.4 to
1.7 kg, with average mean differences of 0.0 kg and no mean biases
observed. As a result, the averaging of models was used to generate
the final prediction model to estimate ALM:

ALM3DO ¼ 2.11071 - 0.01743 * age þ1.19736 * sex þ0.18805 *
mass þ0.04599 * height þ0.25842 * lean mass - 0.09186 * hip
circumference þ0.03604 * average mid-thigh
circumference þ0.03917* average lower bicep circumference -
0.11593 * lower waist circumference.

Where sex¼ 1 for males and sex¼ 0 for females. Measurements
for height and circumference are in cm, while mass and lean mass
are in kg. The overall performance of the final model was r2 ¼ 0.96,
RMSE ¼ 1.5 kg, MD ¼ 0.0 kg, and LoAs from �2.9e2.9 kg, as shown
in Fig. 4. The results of the ALST (excluding bone mass) prediction
were similar, r2 ¼ 0.95, RMSE ¼ 1.5 kg, MD ¼ 0.0 kg and LoAs
from �3.0 to 3.0 kg, with this equation reported in Supplement
Table 2 and the results presented in Supplement Fig. 1.
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For precision estimates, 20 participants had only a single scan
available. Additionally, n ¼ 14 were removed due to having incor-
rect/implausible values for measurements included in the model
(e.g.; thigh circumference ¼ 0 cm). In the final sample that had
complete duplicate 3DO measures (n ¼ 468), precision estimates
for duplicate 3DO ALM estimates were CV ¼ 1.4%, RMSE ¼ 0.34 kg.

4. Discussion

Using a large, diverse sample of adults, we showed that 3DO
estimates of trunk-to-leg volume and ALM can be used to estimate
cardiovascular disease risk. The implementation of these measures
into commercial 3DO systems makes the assessment of MetS risk
and/or estimation of low muscle mass more accessible to health-
care providers. A tool such as 3DO allows for both cost-effective and
frequent monitoring, particularly when implemented into smart-
phones [18]. The benefits of these approaches, in addition to other
easily accessible health metrics, can increase opportunities for an
individual to monitor their health [19]. These features, in addition
visual representations of body shape, also serve as opportune
measures for clinical education when developing diet and exercise
recommendations.



Fig. 2. Prevalence of insulin resistance (top) and Metabolic Syndrome (bottom) based
on trunk-to-leg volume quartile using 3DO-calibrated estimates. Abbreviations:
HOMA-IR, homeostatic model assessment for insulin resistance.
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With rates of MetS risk increasing across the population,
particularly with increasing prevalence being observed during
younger adulthood, the quantification of disease risk poses a sig-
nificant opportunity for earlier risk detection and intervention [20].
However, accessible clinical metrics such as body mass index fail to
capture the changes in muscle and fat distribution that are asso-
ciated with cardiometabolic disease risk across the lifespan [21].
Though anthropometry provides estimates of the distribution of
muscle, fat, and visceral fat, significant limitations exist in terms of
practicality and accuracy, particularly with monitoring changes
with weight stability or age-related change [22]. With increased
access to body composition assessment, novel indices provide op-
portunities to improve detection and risk monitoring.

As larger samples of body composition data are collected,
measures of regional muscle and fat are showing closer associa-
tions with cardiovascular disease risk compared to whole-body
measures [23]. DXA systems have been well documented for their
ability to quantify disease risk based on regional fat and muscle
distribution [21,24,25]. The derivation of body volume measures
and the trunk-to-leg volume using DXA by Wilson et al. [4,12]
allowed for the identification of novel body shape markers asso-
ciated with disease risk. The derivation of trunk-to-leg ratio in
NHANES showed that the predictive accuracy of this ratio was
driven by both muscle and fat composition. This has led to multiple
studies in NHANES datasets showing the positive associations of
trunk fat and negative associations of leg fat to blood pressure in
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adults and adolescents [26,27]. However, application of the trunk-
to-leg volume ratio has not been assessed for its ability to iden-
tify disease risk in other populations. The results of this analysis
show that the trunk-to-leg volume ratios derived from a nationally
representative dataset successfully identified increased risk of
cardiovascular disease parameters. The greater prevalence of
elevated blood pressure (as well as other blood parameters) in the
highest quartile of trunk-to-leg volume for DXA (data not shown)
and 3DO support the findings regarding the impact of regional fat
and muscle distribution on cardiovascular disease risk.

Our dataset showed that Q3 and Q4 of 3DO trunk-to-leg volume
ratio were significantly associated with increased risk and overall
prevalence of abnormal blood parameters as well as the presence of
insulin resistance (as defined by HOMA-IR) and MetS. Interestingly,
the prevalence of HOMA-IR in Q4 males (71.2%) was greater than
females (53.3%). Females in Q4 showed greater prevalence of MetS
(55.5% versus 41.9% in males) as well as each individual blood
parameter with the exception of triglycerides. Previous studies
have indicated that elevated triglycerides are associated with
increased risk of insulin resistance [28]. Insulin resistance is a
known precursor to cardiometabolic disease and the presence of
high HOMA-IR in males may indicate increased likelihood of the
progression of these males into MetS in the future, though the
cross-sectional nature of this study prevents us from drawing these
conclusions [29]. That said, the opportunity tomonitor trunk-to-leg
volume and changes in lean and fat masses through the use of 3DO
provides the opportunity to monitor changes in body shape and
composition that can support further insights into the factors that
lead to MetS development [30].

In addition to regional fat and muscle distribution by trunk-to-
leg volume ratio, low ALM has been linked to risk factors
including diabetes, decreased bone density, and frailty/weakness
[5,31,32]. Arm and leg muscles are most modifiable as a result of
diet, physical activity, and aging, with increased musculature a
protective factor against the development of diabetes and early
mortality [33]. Muscle mass, particularly as measured by DXA, has
been suggested to monitor risk across the lifespan and within pa-
tient populations [34e36]. However, these systems may be cost-
prohibitive for clinical monitoring of dietary, physical activity, and
chemoprevention interventions. Further, even though DXA is
considered a low ionizing radiation imaging technique, it is
reasonable to minimize radiation dose if alternatives are available.
The findings of this study highlight how 3DOmeasures of trunk-to-
leg volume, when calibrated to DXA, perform similarly in predicting
the presence of individual cardiometabolic risk factors as well as
overall MetS presence. These predictions are of similar accuracy to
DXA in the same population, validating the previous model as well
as showing the utility of the measure for risk assessment across
diverse populations. Because trunk-to-leg volume ratio quartiles
were derived from a nationally-represented sample of US adults
and these ratios have a stronger association than fat alone, this
metric provides clinically important tools for monitoring disease
risk. Ultimately, the increased risk for those in Q3-Q4 were shown
to have greater MetS prevalence, particularly in females. These
models therefore provide an accurate screening model for MetS
risk assessment, which agrees with previous work showing the
importance of body shape as a predictor of MetS risk in adults
across sex, age, and race/ethnicity [10,37].

The results also support that a prediction model based on body
shape characteristics provides similar ALM estimates to other
accessible techniques such as bioelectrical impedance analysis or
smartphone-based 3DO [38,39]. The model included demographics
as well as circumferences and lean mass measures, which clearly
reflect body shape differences that improve the representation of
variation in leanmass in the arms and legs across the adult lifespan.



Fig. 3. Prevalence of impaired blood parameters based on trunk-to-leg volume quartile using 3DO-calibrated estimates.

Table 2
Logistic regression models to distinguish abnormal cardiovascular disease risk measures based on trunk-to-leg volume ratio.

DXA using NHANES quartiles

Condition Model AUC Per SD Increase Q1 (n ¼ 136) Q2 (n ¼ 161) Q3 (n ¼ 100) Q4 (n ¼ 105)

TG Age 0.761 2.8 (2.1e3.8) 1 2.0 (0.7e5.8) 7.4 (2.6e20.8) 17.8 (6.3e50.2)
Covariate 0.837 2.2 (1.5e3.1) 1.6 (0.5e5.1) 4.4 (1.4e14.0) 8.5 (2.7e27.3)

HDL-C Age 0.680 2.0 (1.5e2.5) 1 1.2 (0.6e2.4) 2.8 (1.4e5.6) 5.7 (2.8e11.7)
Covariate 0.779 1.8 (1.4e2.5) 1.4 (0.7e3.0) 2.9 (1.3e6.7) 5.0 (2.1e12.1)

BP Age 0.713 1.3 (1.1e1.6) 1 0.8 (0.4e1.5) 1.1 (0.6e2.0) 2.0 (1.0e3.6)
Covariate 0.753 1.2 (1.0e1.6) 0.7 (0.3e1.3) 0.8 (0.4e1.6) 1.3 (0.6e2.8)

BG Age 0.782 2.0 (1.6e2.6) 1 1.5 (0.7e3.3) 3.0 (1.4e6.6) 6.1 (2.8e13.0)
Covariate 0.820 1.9 (1.4e2.6) 1.4 (0.6e3.3) 2.7 (1.1e6.4) 5.1 (2.1e12.4)

HOMA-IR Age 0.738 2.7 (2.1e3.5) 1 2.3 (1.2e4.5) 5.9 (3.0e11.6) 14.4 (7.1e29.3)
Covariate 0.856 2.4 (1.7e3.3) 2.6 (1.2e5.8) 5.7 (2.3e13.9) 11.6 (4.5e30.1)

MetS Age 0.790 3.4 (2.4e4.6) 1 0.9 (0.3e2.4) 3.5 (1.4e8.6) 13.0 (5.5e30.6)
Covariate 0.907 2.6 (1.8e3.8) 0.7 (0.2e2.1) 2.0 (1.0e6.0) 6.2 (2.1e18.0)

3DO TR/L output by regression to DXA TR/L from [1] and using NHANES-derived quartiles

Condition Model AUC Per SD Increase Q1 (n ¼ 130) Q2 (n ¼ 160) Q3 (n ¼ 107) Q4 (n ¼ 105)

TG Age 0.703 2.1 (1.6e2.8) 1 2.5 (1.0e6.7) 5.7 (2.1e14.9) 10.1 (3.8e26.8)
Covariate 0.813 1.5 (1.0e2.1) 1.4 (0.5e3.7) 2.2 (1.2e6.0) 3.8 (1.7e10.9)

HDL-C Age 0.729 2.0 (1.6e2.7) 1 2.4 (1.2e4.9) 4.0 (1.8e8.9) 7.9 (4.7e13.0)
Covariate 0.781 1.6 (1.1e2.2) 1.9 (0.9e4.1) 2.7 (1.2e6.5) 6.5 (2.4e17.2)

BP Age 0.718 1.5 (1.2e1.8) 1 1.1 (0.4e2.9) 1.7 (0.7e4.1) 2.6 (1.3e5.1)
Covariate 0.754 1.4 (1.0e1.6) 1.0 (0.5e2.0) 1.5 (0.6e3.8) 2.5 (1.0e6.1)

BG Age 0.757 1.8 (1.4e2.3) 1 2.7 (1.2e6.3) 4.4 (1.9e10.3) 6.8 (2.9e16.3)
Covariate 0.808 1.4 (1.0e1.9) 1.8 (0.7e4.4) 2.5 (1.0e6.5) 3.1 (1.5e8.7)

HOMA-IR Age 0.756 2.9 (2.2e3.8) 1 3.4 (2.5e5.8) 8.3 (4.2e13.4) 18.4 (12.4e32.8)
Covariate 0.845 2.0 (1.4e2.4) 3.6 (1.5e9.2) 5.0 (2.4e13.2) 6.8 (3.0e19.7)

MetS Age 0.797 3.2 (1.8e4.2) 1 1.0 (0.1e2.2) 3.8 (3.0e4.6) 8.0 (5.4e10.1)
Covariate 0.899 3.0 (2.4e3.6) 0.9 (0.1e1.9) 3.5 (3.0e4.2) 7.1 (5.9e9.8)

Model 1 was adjusted for age, model 2 was adjusted for age, sex, race/ethnicity, BMI, and waist circumference.
Abbreviations: 3DO: 3-dimensional optical, AUC: area under the curve, BG: blood glucose, BP: blood pressure, DXA: dual energy X-ray absorptiometry, HDL-C: high-density
lipoprotein cholesterol, HOMA-IR: homeostatic model assessment for insulin resistance, MetS: Metabolic Syndrome, TG: triglycerides.
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Fig. 4. Linear regression and Bland-Altman plots for final ALM prediction model using
two-fold cross validation. Abbreviations: 3DO: 3-dimensional optical, ALM: appendic-
ular lean mass, LoA: limits of agreement.
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The precision estimates for duplicate measures were similar to
those for fat-free mass from this and other 3DO scanners [1,40,41].
These results support the opportunity to use ALM estimates from
3DO to monitor regional muscle composition across the lifespan.

Advantages of this study include the large, diverse sample of
adults as well as the significant proportion of the population with
MetS. A limitation is that the cut points used by DXA systems (as
well as limitations in criterionmethods such asMRI, which often do
not measure areas such as the head, feet, or hands) limit the op-
portunity validate the regional volumes by DXA. That said, the DXA-
volume approach applies physical modeling of pixel densities as
well as empirical density estimates that reflect knownphysiological
values [12,14]. Given that whole-body volume estimates have been
validated to ADP, it is likely that this approach is accurate for
regional estimates [13]. Clinically, the validity of this approach is
supported by the strong prediction of MetS risk using both DXA and
3DO trunk-to-leg models, though we did not have data available to
assess the links to other health outcomes, as performed previously
[4]. It is also likely that the ALM prediction model may be limited
due to the sample used to derive the equation, supporting the
development of future models with improved performance. That
said, we have shown the strong accuracy and precision of this
model, while performing a machine learning cross-validation
approach to avoid model overfitting. Finally, because these 3DO
measures are device-specific, these results may differ from other
3DO systems that may utilize different regional volume cut lines.

In conclusion, 3DO offers a number of uniquely accessible fea-
tures that make it an appealing tool for use in clinical practice as
2436
well as across non-medical settings. We have shown that the
additional features developed here can be implemented into these
systems to further increase their utility for disease risk identifica-
tion. These tools will aid healthcare professionals in capturing,
quantifying, and educating the public regarding overall health and
disease risk.
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